riskcarriere.nl

A Comparison of Machine Learning Techniques for Predicting Payment Probability

Nieuws
10-11-2025
Marco Benalcázar
This study explores machine learning to improve credit risk scoring, reducing feature engineering complexity and mitigating declining model accuracy as arrears progress, enhancing payment prediction and supporting effective collection strategies.

Abstract

In credit risk, scoring models based on logistic regression have been developed to optimize the default risk assessment. However, these models require complex feature engineering, and their accuracy worsens as the arrears progresses. This study proposes the use of machine learning techniques (XGBoost and artificial neural networks) to generate scores in different arrears segments (No Arrears Segment, 1–30 Days of Arrears Segment, 31–90 Days of Arrears Segment, and All Segments). The Kolmogorov–Smirnov (KS) metric is used to assess the efficiency and predictive power of the models. To ensure the accuracy and reliability of the models, a five-step methodology is employed. It starts with the formulation of the problem, followed by the selection of a data sample and definition of the target variable, then a descriptive analysis of the data is performed to facilitate the data cleaning. Subsequently, the models are trained and tested, and finally, the results are analyzed, and the models obtained are interpreted. The results show that both XGBoost and artificial neural network models outperform logistic regression in most of the arrears segments. In the No Arrears Segment, the XGBoost model is the best with KS = 63.36%. In the 1–30 Segment, XGBoost is also the best with KS = 51.38%. In the 31–90 Segment, the artificial neural network model is the best with KS = 38.77%. Finally, with all segments of arrears, the XGBoost model is again the best with KS = 74.05%.

[....]


Lees verder op: mpdi.com

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
Brand New Day
6.000 - 7.500
Senior
Amsterdam
Als Senior IT Internal Auditor bij Brand New Day voer je end-to-end IT-audits uit, van risicoanalyse en scope tot rapportage en opvolging. Je versterkt de auditfunctie, adviseert over IT-governance, security,...
Marsh
Marktconform
Medior, Senior
Rotterdam
Als Client Executive / Practice Leader Agri, Food & Beverage bij Marsh beheer en groei je een portefeuille met grote Agri, Food & Beverage-klanten, stuur je renewals en aanbestedingen aan,...
Marsh
Marktconform
Junior, Medior
Rotterdam
As a Data Scientist at Marsh, you develop and implement ML/AI/NLP models for commercial insurance risk, translate business needs into data-driven approaches, deliver advanced actuarial/statistical analyses, and support teams with...
Hoogheemraadschap Hollands Noorderkwartier (HHNK)
5.134 - 7.180
Medior, Senior
Heerhugowaard
Als Medior Auditor bij Hoogheemraadschap Hollands Noorderkwartier voer je proces-, financiële, compliance- en IT-audits uit, analyseer je risico’s en beheersing, rapporteer je bevindingen en bewaak je opvolging, en professionaliseer je...