riskcarriere.nl

Practical Guide for LLMs in the Financial Industry Introduction

Nieuws
02-01-2025
Brian Pisaneschi
This paper serves as a starting point for financial professionals and organizations looking to integrate LLMs into their workflows. It provides a broad overview of various financial LLMs and techniques available for their application, exploring how to select, evaluate, and deploy these tools effectively.

Large language models (LLMs) are advanced artificial intelligence (AI) models trained to understand and generate human-like text based on vast datasets, often containing millions or even billions of sentences. At the core of LLMs are deep neural networks that learn patterns, relationships, and contextual nuances in language. By processing sequences of words, phrases, and sentences, these models can predict and generate coherent responses, answer questions, create summaries, and even carry out complex, specialized tasks. 

In the financial industry, the adoption of LLMs is still in its early stages, but interest is rapidly growing. Financial institutions are beginning to explore how these models can enhance various processes, such as analyzing financial reports, automating customer service, detecting fraud, and conducting market sentiment analysis. While some organizations are experimenting with these technologies, widespread integration is limited due to such factors as data privacy concerns, regulatory compliance, and the need for specialized fine-tuning to ensure accuracy in finance-specific applications.

In response to these challenges, many organizations are adopting a hybrid approach that combines frontier large-scale LLMs with retrieval-augmented generation (RAG) systems.1  This approach leverages the strengths of LLMs for general language understanding while incorporating domain-specific data through retrieval mechanisms to improve accuracy and relevance. However, the value of smaller, domain-specific models remains significant, especially for tasks requiring efficient processing or where data privacy and regulatory compliance are of utmost concern. These models offer tailored solutions that can be fine-tuned to meet the stringent demands of the financial industry, providing a complementary alternative to larger, more generalized systems.

[....]

Lees verder op: CFA institute

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
Klaverblad
41.000 - 62.000
Medior
Zoetermeer
Als Acceptant Zakelijke Verzekeringen bij Klaverblad beoordeel je verzekeringsaanvragen, stel je offertes en polissen op, en beantwoord je klantvragen. Je werkt nauw samen met collega's aan productverbeteringen en procesoptimalisatie, alles...
ROC Zadkine
4.021 - 6.680
Medior, Senior
Rotterdam
Als (Senior) Auditor bij ROC Zadkine ben je cruciaal voor interne audits binnen onze MBO-instelling. Je beoordeelt processen en systemen, draagt bij aan continue verbetering, en versterkt de Interne Audit...
EY
Marktconform
Senior
Amsterdam
As a Senior Manager Consulting Internal Audit and Internal Controls at EY, lead innovative audit services to manage critical risks. Strategically guide clients, foster strong relationships, and grow a high-performing...
Vektis
5.500 - 6.200
Medior, Senior
Zeist
Als Risk & Compliance Expert met impact op de zorg bij Vektis speel je een sleutelrol in risicobeheersing en compliance. Werk samen met interne teams en stakeholders om systemen compliant...